Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(58): 121253-121268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979109

RESUMO

Understanding particle dispersion characteristics in indoor environments is crucial for revising infection prevention guidelines through optimized engineering control. The secondary wake flow induced by human movements can disrupt the local airflow field, which enhances particle dispersion within indoor spaces. Over the years, researchers have explored the impact of human movement on indoor air quality (IAQ) and identified noteworthy findings. However, there is a lack of a comprehensive review that systematically synthesizes and summarizes the research in this field. This paper aims to fill that gap by providing an overview of the topic and shedding light on emerging areas. Through a systematic review of relevant articles from the Web of Science database, the study findings reveal an emerging trend and current research gaps on the topic titled Impact of Human Movement in Indoor Airflow (HMIA). As an overview, this paper explores the effect of human movement on human microenvironments and particle resuspension in indoor environments. It delves into the currently available methods for assessing the HMIA and proposes the integration of IoT sensors for potential indoor airflow monitoring. The present study also emphasizes incorporating human movement into ventilation studies to achieve more realistic predictions and yield more practical measures. This review advances knowledge and holds significant implications for scientific and public communities. It identifies future research directions and facilitates the development of effective ventilation strategies to enhance indoor environments and safeguard public health.


Assuntos
Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Ventilação , Respiração
2.
Environ Sci Pollut Res Int ; 30(35): 83495-83512, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37341939

RESUMO

This study aims to evaluate the effects of temperature and relative humidity on the propagation of COVID-19 for indoor heating, ventilation, and air conditioning design and policy development in different climate zones. We proposed a cumulative lag model with two specific parameters of specific average temperature and specific relative humidity to evaluate the impact of temperature and relative humidity on COVID-19 transmission by calculating the relative risk of cumulative effect and the relative risk of lag effect. We considered the temperature and relative humidity corresponding to the relative risk of cumulative effect or the relative risk of lag effect equal to 1 as the thresholds of outbreak. In this paper, we took the overall relative risk of cumulative effect equal to 1 as the thresholds. Data on daily new confirmed cases of COVID-19 since January 1, 2021, to December 31, 2021, for three sites in each of four climate zones similar to cold, mild, hot summer and cold winter, and hot summer and warm winter were selected for this study. Temperature and relative humidity had a lagged effect on COVID-19 transmission, with peaking the relative risk of lag effect at a lag of 3-7 days for most regions. All regions had different parameters areas with the relative risk of cumulative effect greater than 1. The overall relative risk of cumulative effect was greater than 1 in all regions when specific relative humidity was higher than 0.4, and when specific average temperature was higher than 0.42. In areas similar to hot summer and cold winter, temperature and the overall relative risk of cumulative effect were highly monotonically positively correlated. In areas similar to hot summer and warm winter, there was a monotonically positive correlation between relative humidity and the overall relative risk of cumulative effect. This study provides targeted recommendations for indoor air and heating, ventilation, and air conditioning system control strategies and outbreak prevention strategies to reduce the risk of COVID-19 transmission. In addition, countries should combine vaccination and non-pharmaceutical control measures, and strict containment policies are beneficial to control another pandemic of COVID-19 and similar viruses.


Assuntos
COVID-19 , Humanos , Temperatura , COVID-19/epidemiologia , Umidade , Estações do Ano , Reprodução
3.
J Environ Sci (China) ; 108: 175-187, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465431

RESUMO

The Coronavirus Disease 2019 (COVID-19) highlights the importance of understanding and controlling the spread of the coronavirus between persons. We experimentally and numerically investigated an advanced engineering and environmental method on controlling the transmission of airborne SARS-CoV-2-laden aerosols in the breathing microenvironment between two persons during interactive breathing process by combining the limited space air stability and a ventilation method. Experiments were carried out in a full-scale ventilated room with different limited space air stability conditions, i.e., stable condition, neutral condition and unstable condition. Two real humans were involved to conducted normal breathing process in the room and the exhaled carbon dioxide was used as the surrogate of infectious airborne SARS-CoV-2-laden aerosols from respiratory activities. A correspondent numerical model was established to visualize the temperature field and contaminated field in the test room. Results show that the performance of a ventilation system on removing infectious airborne SARS-CoV-2-laden aerosols from the interpersonal breathing microenvironment is dependent on the limited space air stability conditions. Appropriate ventilation method should be implemented based on an evaluation of the air condition. It is recommended that total volume ventilation methods are suitable for unstable and neutral conditions and local ventilation methods are preferable for stable conditions. This study provides an insight into the transmission of airborne SARS-CoV-2-laden aerosols between persons in ventilated rooms with different limited space air stability conditions. Useful guidance has been provided to cope with COVID-19 in limited spaces.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Humanos
4.
Environ Sci Pollut Res Int ; 28(29): 39322-39332, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33755892

RESUMO

The objective of this study is to understand the effect of indoor air stability on personal exposure to infectious contaminant in the breathing zone. Numerical simulations are carried out in a test chamber with a source of infectious contaminant and a manikin (Manikin A). To give a good visual illustration of the breathing zone, the contaminant source is visualized by the mouth of another manikin. Manikin A is regarded as a vulnerable individual to infectious contaminant. Exposure index and exposure intensity are used as indicators of the exposure level in the breathing zone. The results show that in the stable condition, the infectious contaminant proceeds straightly towards the breathing zone of the vulnerable individual, leading to a relatively high exposure level. In the unstable condition, the indoor air experiences a strong mixing due to the heat exchange between the hot bottom air and the cool top air, so the infectious contaminant disperses effectively from the breathing zone. The unstable air can greatly reduce personal exposure to the infectious contaminant in the breathing zone. This study demonstrates the importance of indoor air stability on personal exposure in the indoor environment and provides a new direction for future study of personal exposure reduction in the indoor environment.


Assuntos
Poluição do Ar em Ambientes Fechados , Ventilação , Movimentos do Ar , Poluição do Ar em Ambientes Fechados/análise , Manequins
5.
Insect Sci ; 28(3): 692-704, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32306549

RESUMO

The insect group II chitinase (ChtII, also known as Cht10) is a unique chitinase with multiple catalytic and chitin-binding domains. It has been proven genetically to be an essential chitinase for molting. However, ChtII's role in chitin degradation during insect development remains poorly understood. Obtaining this knowledge is the key to fully understanding the chitin degradation system in insects. Here, we investigated the role of OfChtII during the molting of Ostrinia furnacalis, a model lepidopteran pest insect. OfChtII was expressed earlier than OfChtI (OfCht5) and OfChi-h, at both the gene and protein levels during larva-pupa molting as evidenced by quantitative polymerase chain reaction and western blot analyses. A truncated OfChtII, OfChtII-B4C1, was recombinantly expressed in Pichia pastoris cells and purified to homogeneity. The recombinant OfChtII-B4C1 loosened compacted chitin particles and produced holes in the cuticle surface as evidenced by scanning electron microscopy. It synergized with OfChtI and OfChi-h when hydrolyzing insoluble α-chitin. These findings suggested an important role for ChtII during insect molting and also provided a strategy for the coordinated degradation of cuticular chitin during insect molting by ChtII, ChtI and Chi-h.


Assuntos
Quitinases , Muda , Mariposas , Animais , Sítios de Ligação , Quitina/metabolismo , Quitinases/química , Quitinases/genética , Quitinases/isolamento & purificação , Quitinases/metabolismo , Genes de Insetos , Proteínas de Insetos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Conformação Proteica , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharomycetales/genética , Especificidade por Substrato
6.
J Environ Sci (China) ; 99: 336-345, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183712

RESUMO

This study experimentally studied the dispersion of exhaled pollutant in the breathing microenvironment (BM) in a room equipped with a displacement ventilation (DV) system and indoor air stability conditions (i.e., stable and unstable conditions). The vertical temperature differences and the carbon dioxide (CO2) concentration in the BM were measured. Results show that when DV is combined with the stable condition (DS), pollutant tends to accumulate in the BM, leading to a high pollutant concentration in this region. Whereas, when DV is combined with the unstable condition (DU), pollutant diffuses to a relatively wider area beyond the BM, thus the pollutant concentration in the BM is substantially reduced. Moreover, increasing the flow rate can reduce the pollutant concentration in the BM of the DS but yields little difference of the DU. In addition, personal exposure intensity increases with time, and the DS has a relatively higher increase rate than DU. The results suggest that indoor air stability will affect the performance of DV systems. DS will lead to a higher health risk for people when they stay in the indoor environment with pollutant sources, and DU is recommended for minimizing pollutant level in the BM in order to reduce the pollutant concentration and providing better air environments for the occupants.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono , Humanos , Ventilação
7.
Sci Rep ; 7(1): 8549, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819240

RESUMO

Indoor air quality (IAQ) is much more crucial to human health than its atmospheric air quality counterpart. Improving indoor air environment requires investigating how different indoor air stability affects airflow trajectory. By presenting both manikin experiment and Computational Fluid Dynamics (CFD) simulation, we find that temperature background effect, i.e., indoor air stability, which is a measure of the nature or attribute of the capacity to keep the original or initial inertia force or inertia transmission state instead of turbulence diffusion or transmission restraining state, i.e., a kind of inertia stability, rather than a turbulence diffusion characteristic stability, is markedly affecting the interactive respiration process. So we define and derive a new parameter called G c number as a criterion to judge air stability. Furthermore, we find the phenomenon of inertia conjugation. Air stability and inertia conjugation, which named together as temperature background effect, work together on interactive respiration process. This work gives us a re-orientation of temperature difference agents and thus improves human being's living environment.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar/análise , Respiração , Temperatura , Movimentos do Ar , Algoritmos , Simulação por Computador , Humanos , Hidrodinâmica , Manequins , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...